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A CLASS OF INVERSE CREEP THEORY PROBLEMS 

I. Yu. Tsvelodub UDC 539.376 

Certain inverse problems associated with finding the external effects needed to obtain 
the requisite residual body or plate shape under creep conditions in a given time t, with 
elastic unloading are taken into account at the time t = t,. It is assumed here that the un- 
known external effects belong to a definite class, for instance relaxation problems were 
examined in [2, 4, 5] when unknown displacements of body surface points (unknown plate de- 
flections) remained fixed during the time t,, and external loads were considered constant 
in time in [i, 2], etc. 

A class of inverse problems about finding external loads such as would assure a given 
residual body (plate) shape at any running time is investigated in this paper. A theorem 
on ithe uniqueness of the solution is proved for the cases of small strains. A variational 
formulation i!s given for these problems on the basis of finding the stationary value of a 
ce~tainfunctional; the displacement and stress velocities are here varied simultaneously 
as both running and residual (after elastic unloading). The solution of the problem in an 
exact formulation is compared in a specific example with the solution obtained by using the 
mentioned mixed variational principle. 

i. Let us consider a uniformly heated body of volume v with surface S whose govern- 
ing strain equations we write as 

ehz = a ~ z ~ n o ~  + ekt ~ ( k , l  --  1 , 2 ,  3)~ ( 1 . 1 )  

where  r163 r163 c ,  aks  aks = amnks a r e  componen t s  o f  t h e  t o t a l  s t r a i n ,  c r e e p  s t r a i n ,  s t r e s s  
and e l a s t i c  p l i a b i l i t y  t e n s o r s ,  r e s p e c t i v e l y ,  summat ion  f rom 1-3  i s  p e r f o r m e d o v e r  r e p e a t e d  
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subscripts. The strains are considered small so that the components eks are expressed in 
terms of the displacement vector components u k by known Cauchy relationships. 

We take the general Rabotnov [7] dependences for the creep strain rates DkZ = ~kZ c (the 
dot denotes differentiation with respect to time t), which yield a good description of the 
metal creep process and have the following form under isothermal strain: 

~ t  = q h l ( ~ m n ,  q i )  (k ,  l ,  m ,  1~ = 1, 2, 3, i =  t ,  2 . . . . .  @. ( 1 . 2 )  

Here qi is the set of structural parameters whose variation in time is reflected by the ki- 

netic equations 

�9 c q~ q ~ ( ~ , ~ , q j )  (i,j ~,o, r ,m,n=l~~  (1.~" 

Let us assume that the medium under consideration satisfies the stability postulate 
that is formulated as follows for an isothermal creep process [8]: For any two paths in 

stress space ~ks (I) = aks (I) (t) and cks (2) =Oks (t) .and their corresponding paths in creep 

strain rate space qks (I) = nks If) (t) and nkZ (2) = nks (2) (t) (k, Z = I, 2, 3), the following 

inequality is satisfied for any time t > 0 

t 

S A~k~Ag~zdt ~ O, (1.4) 
o 

where 5OkZ = Oks (1) - Oks (z), Anks = nks (1) - ~ks (2) under the conditions qi (1) = qi (~) and 

gkzC(l) = eks for t = 0 [in those cases when the right sides of (1.3) do not contain 

emn c, the condition eks c(I) = ekZ c(2) is not certain at t = 0]. It is considered that the 
equality sign in (1.4) is possible for a medium compressed under creep (Nkk ~ 0), only for 
5Oks = 0 (k, s = i, 2, 3) for any t > 0 and for an uncompressed medium (qh~ = 0) 

only for A6hz = Ap(t)61~z(k,l-- I, 2, 3) for t > 0 (6ks are unit tensor components). 

Condition (1.4) imposes definite constraints on the creep equations (1.2) and (1o3). 
These constraints are set up in [8] for fundamental media classes (nonlinearly viscous, hard- 
ening, softening, media with strain anisotropies, etc.). 

Let us formulate the inverse problem of creep theory: What external loads Pk = Pk (t) 
must be applied to a body surface S so that it would have given residual displacement Uk = 
Uk(t) (Uk = 0 for t = 0) (k = i, 2, 3) of the surface points, i.e., those displacements that 
would remain on S after instantaneous removal of running external loads and elastic unload- 
ing? It is considered that the body was in the undeformed state for t < 0 (or, in the more 
general case, creep strain distributions eks and values of the parameters qi are given in 
the body for t = 0). 

Let us prove that if the solution of this problem for a body with the governing equa- 
tions (1.1)-(1.3) and the constraint (1.4) exists then it will be unique for a body com- 
pressed during creep while the external loads Pk for an incompressible body are determined 
to the accuracy of arbitrary hydrostatic pressure. 

We assume for the proof that two solutions exist for this problem that satisfy the iden- 
tical boundary and initial conditions, we denote their appropriate differences by using the 

symbol A. Since A~ k = 0 on S for any t > 0, then we obtain from the known equation of virtu- 
al work 

S AamAsktdz,--: 0; ( 1 . 5 )  
7) 

c 
~m = a~l~.~p .... + ekz ( k , l  = t,  2 ,3) ,  ( 1 . 6 )  

where ~ks and Pks are the residual strain and residual stress fields and 9ks = 0 for t = 
0 (when the eke c distribution is given in the body at t = 0 the stresses Pks are found 
uniquely, i.e.~ 8pk s = 0 for t = 0). 

For any t > 0 we represent the stress field in the form OkZ = ~ e + PkE [i~ 2] (oks 

are stress components which correspond to the solution of the elastic problem for running values 
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of the external loads). Because of self-equilibr:ation of the stresses Pks the equality 
~a " e l~z~,..Ap,~nAot, zdv=O holds [i, 2], which we use with (i.i) to find from (1.5) 

,[ (a1,t..~A~; ~,,~A,ol, l + Acrl,/Aqhz) dv = 0. ( 1 . 7 )  
11 

Integrating (1.7) with respect to time between zero and the running time t and taking 
into account that Apk s = 0 for t = 0 we obtain 

] ' fA  Aql~zdt dr=O,  -7- ~I~ l 
t 
0 

which is possible by virtue of the properties of the elastic potential and postulate (1.4) 
only for Apk s = 0 and Aaks = 0 (for a compressible body under creep) or for AOks = Ap6ks 
(for an incompressible body) (k, ~ = i, 2, 3) at any time t > 0. It follows from the equilib 
rium equations that Ap is independent of the coordinates of the body points and can be a 
function of just the time t. There hence results that, in the first case, the external loads 
Pk are determined uniquely, while in the second to the accuracy of an arbitrary hydrostatic 
pressure. The assertion is proved. 

Let us note that by using the results obtained in [2], a theorem on uniqueness of the 
solution of an analogous inverse problem of plate bending under small deflections can be 
proved; it is here necessary to find the external loads assuring given residual deflections 
at any time under appropriate boundary conditions. 

2. The fundamental equations of the class of problems under investigation include: 
the governing relationships (1.1)-(1.3) and (1.6); the Cauchy relationships for the running 
~ks and residual eks strains, the equilibrium equations for running Oks and residual Pks 
stresses, boundary conditions for the residual stresses Pks and residual displacements Uk, 
and initial conditions for eks and qi" Without writing these equations down in the general 
case, let us examine the problem of pure bending of a rectangular beam of unit width with 
height h as the simplest example. Find the bending moment M = M(t) that will assur@ a given 
residual curvature ~ = x(t). For t < 0 the beam was in the undeformed state, i.e., • = 0 
for t = 0. 

We assume the beam material to be subjected to power-law creep. Then, using the stan- 
dard hypothesis of plane sections [7], we obtain the running and residual strain rates 
from (i.i) and (1.6) (-h/2 ~ y ~ h/2) 

e = xg = o~E + Ba ' ;  ( 2 . 1 )  

= xg = p / E + B o %  ( 2 . 2 )  

where  • and ~ a r e  t h e  r u n n i n g  and r e s i d u a l  c u r v a t u r e s ,  E i s  Young 'S  modulus ,  and B and n 
a r e  c r e e p  c o n s t a n t s .  

The r e s i d u a l  s t r e s s e s  p a r e  s e l f - e q u i l i b r a t e d ,  t h e  z e r o t h  bend ing  moment c o r r e s p o n d s  
t o  them, i . e . ,  f o r  any t > 0 

I~1~ 1~,,'2 

I, pgdg = 2 ~ pgdg =- O. 
- 1~ o 

(2.3) 

Let us determine o0, the stress for t = 0. It follows from (2.1) that o 0 = Ez0y. Sub- 
stituting this value into (2.2) for t = 0, multiplying the latter by y and integrating with 

respect to y between y and h/2 with (2.3) taken into account, we have -ff-k 2 ] ~0 =" ,~T~ x 

(h?+~ V~+ 2 ( h 1 ~- '~1  '/n - 
2 / , hence o o = [-~\-2-2 / n0] Y (u0 is the rate of residual curvature for t = 0). 
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Let us introduce the dimensionless quantities $ = 2y/h, ~ = hz/2, ~ = h• a = a/p0, 
= BEp0 n-~t (P0 > 0 is the characteristic stress). Then we obtain a 0 = i/p0 x [ ~  x 

Ep~-' d'~ '/ for the dimensionless stress for t = 0. We select the constant P0 

f r o m  t h e  c o n d i t i o n  m a x o  0 = l ,  i . e . ,  o 0 = g and  P0 = E } 0 ( n  + 2 ) / 3  ( h e r e  and b e l o w ,  t h e  d o t  
d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  t h e  d i m e n s i o n l e s s  t i m e  ~ ) .  Re f i n d  f o r  t h e  d i m e n -  
s i o n l e s s  q u a n t i t i e s  f r o m  ( 2 . 1 ) - ( 2 . 3 )  (we o m i t  t h e  b a r  a b o v e  t h e  o and  p ) :  

a } 
7- ~ = o  + o n ;  ( 2 . 1 ' )  

'~ -i- 2 ~o 

,C 

3 ~ ~ = ,o + on; 
n + 2  

~0 

1 

5 p~ d~ = o. 
0 

( 2 . 2 ' )  

( 2 o 3 ' )  

There results from (2.!'), (2.2'), and the initial conditions 

3 ~ - - ~  ( 2 . 4 )  

~0 
M u l t i p l y i n g  ( 2 . 2 ' )  by  g, i n t e g r a t i n g  w i t h  r e s p e c t  t o  ~ b e t w e e n  0 and 1, and  t a k i n g  a c -  

c o u n t  o f  ( 2 . 3 ' ) ,  we h a v e  -,z t'21 v.q~ - ~o"$d~. S u b s t i t u t i n g  t h e  v a l u e  o f  o f r o m  ( 2 . 4 )  i n t o  t h i s  

'~0 0 

r e l a t i o n s h i p ,  we f i n d  

q~o o 

(2.5)  

and then (2.4) into (2.2') and differentiating (2.5) with respect to ~, we arrive at a system 
of equations to find the functions p = p($, ~) and ~ = a(~): 

Z, 
3 ~ 

,,, - ~ - -  i,~ (/ = f . ,= -  ~ ) ,  n i- 2 ~ - : 
% 

1, (,7 4o  

( 2 . 6 )  

It is taken into account in the derivation of the second equation in (2.5) that ~ is indepen- 
dent of $. The initial conditions for system (2.6) have the form 

p(~, O):-- O, a(O) = 1. ( 2 . 7 )  

Let us note that (2.5) and the second equality in (2.6) are equivalent by virtue of (2.7). 

Numerical integration of system (2.6) with conditions (2.7) causes no difficulties. For 

instance, for the case when the residual curvature grows at a constant rate, i.e., ~ = ~0 = 
const, we write (2.6), after simple manipulations, as 

(Z 

�9 a /n  
e - ,~ + 2 ~ - -  (!  = t, -:- ~ ) ,  

1 )/; 
0 0 

( 2 . 8 )  

The computation procedure is the following. Segment [0, i] is partitioned into 21 in- 
tegration nodes so that the step in ~ would equal 0.05. The first equation of (2.8) is writ- 
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Fig. i 

ten at these nodes, i.e., for different values of $. The system obtained in combination 
with the second equation in (2.8) and the initial conditions is integrated by the Runge- 
Kutta method. The integrals in (2.8) were here replaced by finite sums of the Simpson for- 
mula using the same nodes, i.e., the integration step is AS = 0.05. The integration step 
A~ in the dimensionless time was varied and the results of the computation were compared 
for different values of A~; the initial step AT = 0.i was selected, which was magnified ten- 
fold after i0 steps. The graphs ~ = ~(x) are displayed by continuous lines for n = 3, 5, 9 

I 

[~ characterizes the bending moment since it follows from (2.3') and (2.4) that a~gI'o~d$ 
I 

\ (} 

6 ~ . . 3n [ 3 \ tin 
, M) As i s  seen from the graphs,  tends to  i t s  l i m i t  value  

[ ~  ( 3 )  = 1 . 0 8 4 ,  a~  ( 5 )  = 1 . 1 5 1 ,  a~  ( 9 )  = 1 . 2 3 0 ]  w h i c h  c o r r e s p o n d s  t o  t h e  s t e a d y - s t a t e  s o l u -  
t i o n  o f  t h e  s y s t e m  ( 2 . 8 )  a s  : -> ~ when ~ = & = 0.  

The s t e a d y  s t r e s s  d i s t r i b u t i o n  h a s  t h e  f o r m  

[ 3 ~l/nf 3n t [ 3 ~1/~ _ _  . ~ ~ ~ ~ l / ' n  

For instance, for n = 3, the stress distribution for x ~ 5 practically agrees with (2.9), 
the corresponding values of ~ are somewhat greater for n = 5 and 9, i.e., as n grows the 
(dimensionless) time of the stress redistribution from the elastic o 0 = $ to the steady (2.9) 
also grows. 

The running dimensionless curvature ~ is determined from (2.4) 

~/~o = T + (n + 2)~/3, ( 2 .  : 0 )  

since ~ = ~0~ in this case. Therefore, for sufficiently large x (for example, x ~ 5 for 
n = 3) when a = ~, the running curvature grows at the same rate as the residual ~ = ~0. 

3. The class of inverse problems being investigated allows for a variational formula- 
tion. Let us examine the functional 

= S + + k , ) ] . . -  

S 

(3.1) 

where eke = (i/2)(Uk,s + Us eks = (i/2)(Uk,s + Us are residual and running strain 
components (the subscript after the comma denotes the partial derivatives with respect to 
the appropriate Cartesian coordinate); Dks are creep strain rate components that are deter- 
mined according to (1.2); Pk are external load components; and Uk* are given residual dis- 
placements S (k, s = i, 2, 3). 
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Let us vary the functional (3.1) by considering the independent variables 6ks , Pks 

6k, and ~k (k, s = i, 2, 3). Performing the usual calculations in such cases (see [7, pp. 
634-637, for instance]) we obtain from (3.1) 

[n k (k = i, 2, 3) are components of the unit normal vector external to S]. 

Because of the independence of the variations 6~ks 6PkZ, 6~k, and 6~ k in the volmne 

v and 66 k, 6u k, and 6~k on the surface S there follows from the equality 6J = 0 

et~z = a k ~ m ~ P m ~ + 1 1 h l ,  ~1~ ~ ahlm~m,~'-~- q ~ ,  [Th~, ~ == Pht ,~ ~ 0 i n  t h e  v o l u m e  v ,  

( T h l n l  6 i ) h  = P h ,  P k l l Z l  = O, gtt~ = U~,  on t h e  s u r f a c e  S (k, 1 = ~[, 2,  3). 

Therefore, the stationarity conditions of functional (3.1) are the physical relations 
(i.I) and (1.6) written in velocities, including also the elastic unloading equations, the 
equilibrium equations, and the boundary conditions for running and residual stresses also 
written in velocities. 

The formulated variational principle is analogous to the mixed variational principle 
for direct creep theory problems [7], except in contrast to this latter, the second set of 
variables characterizing both the running and the residual stress-strain state (after elas- 
tic unloading) is varied in (3.1). 

Since the stationarity conditions of the functional (3.1) are equivalent to the problem 
in velocities, the question arises about the determination of the stress components akZ at 
t = 0 (as noted above, the components Pks are either given uniquely at t = 0 or are deter- 
mined from the given Eks distribution at t = 0). Let us note that the field aks at t = 0 
is determined uniquely, as follows directly from (1.7) since Apk s = 0 and AOks s e 0 for 
t = 0 because of (1.4). 

As is customarily done [7], let us assume that the relations (1.2) are potential, i.e., 
a function # = ~(aks qi) exists such that qks = 8~/8aks (k, s = i, 2, 3). Then to find 
the initial stresses aks 0 it is possible to proceed as follows. We obtain from the virtual 
work equation and (1.6) 

S V .'~" v 

where we consider ah~..ff).~,~oOk:od~" = 0 [i, 2]. It is easy to see that this equality is more accurate 
v 

and for such variations 6Oks 0 which satisfy the equilibrium equations in accordance with the 
variations 6e~s 0 = aks 5Omn 0 - the equations in junction with the strain i.e., 6gks 0 should 
be the variations of some elasticity solution. Then 

~6ah,onzuhodS = f6a,,~,oq,:,orh'= ~ ~ q)(o',,,o, </~o)&" 
S v v 

(qi0 are given values of the parameters qi for t = 0). 

Since the function # = ~(aks 0) will be convex according to (1.4), it can be shown that 
among all the elastic stress fields the true initial stress state aks 0 yields the minimum 
of the functional 

al~zonluj~odS ( 3 . 2  ) 
v S 
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(~k0 are given residual di~plat~eme~t velocities o~ N~tface pO.i~h,s for t = 9). 

Therefore, the solution of the inverse problem of creep theory under inveStigation is 
equivalent to finding the stationary value of functional (3.1), the initial Stress fields 
~163 here minimize the functional (3.2) under the stipulations made above. This disc~o~ses 
a possibility for constructing approximate solutions of problems of this class. 

As an example, let us examine the same problem of beam bending as in Sec. 2. In this 
case, as is easy to show, function<s (3.1) and (3.2) have the form 

hl~ 
" , 

J =  ~ + ~ p - - : p : - -  + 

0 

(3.1') 

~/~ 
B , n + i  

0 

By giving an initial stress distribution o 0 linear i n y, that corresponds to the elastic 

( h  1 solution, and minimizing (3.2'), we find o0 = L 3B k-2-] z~ ,y' which agrees with the 

analogous field in Sec. 2. Using the plane'sections hypothesis and introducing the same 
dimensionless quantities as in Sec. 2, we obtain from (3.1') that to the accuracy of a con- 
stant factor 

o ~o 
(3.3) 

(o and p are dimensionless stresses). It is easy to see that the stationarity conditions 
(3.3), where the independent variabl:es ave ~, 6, and ~, agree with the relationships (2.1')- 
(2.3'). 

As before, let the residual curvature grow at a constant rate, i.e., ~ = ~0. Let us 
give the stress distribution in the form of a combination of elastic (o = ~, p = 0) and steady 
(2.9) with the equality (2.4) conserved 

where a, 8, and 7 are unknown fun'ctions of the time: 

~ ( o )  = t ,  v (o)  = ~(o)  = o. 

~(3.4) 

(3.5) 

Let us note that as T-~oo ~------7---- 2~-~-~7-~Z/ ' ~ ~n--fT-fZ] , as follows from (2.9). 

Substituting (3.4) into (3.3), and taking into acc'ount that ~ = ~0, we have 
, i i : '  " :  : ' : :  ~' ' :~ 

s =  - 

n+2 '[ ~,(~z ~ ) 3  : , _ [ . ~ n  ~'(a+2"))@~n ~2] - 
1 

n +3 2 ~ [(~ + 71 ~ + ~ / ~ 1  n [(~ + 2~) ~ + 2[~u= l d~. 
0 

Equating the variation 6J calculated under the assumption.that a,.~, y, and ~ are var- 
ied independently to zero, i.e., setting 8J/3~ = 3J/3~ = 3J/~ = 3J/3~ = 0, we arrive at a 
system of equations that take the ~oliowing form after simple manipulations: 
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n + 2  " 3 n  " 

~-- - ' 3 " -  - -  2n"-- -~  
~ 0  0 

1 

n n (n--  t) 2 ~ n-~-2 
2n -i- i 3 (2n + t) 2 3 [(0r -{- ~) ~ --~ ~i/n]"  gl/n d~ = O. 

O 

( 3 . 6 )  

According to (3.5), the first of the relationships (3.6) is equivalent to (2.10) and 
the second to the equality ? =--3n~/(2n ~ I) whose substitution into the remaining two rela- 
tionships of (3.6) while differentiating the third with respect to ~ will yield a system of 
equations in the functions ~ = a(T) and ~ = ~(z): 

.... = f~/~ 
n (n-- I)" 2~L + I 3 " ' 

0 s 

Sys t em ( 3 . 7 )  w i t h  t h e  i n i t i a l  c o n d i t i o n s  ( 3 . 5 )  was i n t e g r a t e d  by t h e  same method  and 
w i t h  t h e  same s t e p  AT as  s y s t e m  ( 2 . 8 ) .  Graphs  o f  a = a ( ~ )  f o r  n = 3, 5,  9 a r e  d i s p l a y e d  
in  F i g .  1 by d a s h e d  l i n e s .  (By v i r t u e  o f  t h e  e q u a l i t y  ~ = - 3 n B / ( 2 n  + I )  c o n d i t i o n  ( 2 . 3 ' )  
is satisfied; therefore, a has the same meaning as in Sec. 2, i.e., characterizes the bending 

moment s i n c e  ~ = 3 S e ~ d ~ .  As s e e n  f rom t h e  g r a p h s ,  t h e  d i f f e r e n c e  be t w e e n  t h e  v a l u e s  o f  ~ 
u 

c o r r e s p o n d i n g  t o  t h e  s o l u t i o n  o f  t h e  p r o b l e m  in  an e x a c t  f o r m u l a t i o n  and t h o s e  o b t a i n e d  by 
u s i n g  t h e  mixed  v a r i a t i o n a l  p r i n c i p l e  i s  s m a l l  a l t h o u g h  i t  i n c r e a s e s  as  n g rows .  The d i f -  
f e r e n c e  i n  t h e  d i a g r a m s  o f  t h e  s t r e s s e s  o and p i s  more n o t i c e a b l e .  A more r a p i d  s t r e s s  r e -  
d i s t r i b u t i o n  f r o m ' t h e  e l a s t i c  t o  t h e  s t e a d y  ( 2 . 9 )  i s  c h a r a c t e r i s t i c  f o r  t h e  s o l u t i o n  c o r r e -  
s p o n d i n g  t o  s y s t e m  ( 3 . 7 ) .  These  d i a g r a m s  a r e  n o t  p r e s e n t e d  h e r e  s i n c e  we a r e  i n t e r e s t e d  
o n l y  i n  ~ i t  a s  p r e c i s e l y  c h a r a c t e r i z e s  t h e  d e s i r e d  e x t e r n a l  e f f e c t .  

4. As has  a l r e a d y  been  n o t e d  a b o v e ,  t h e  c l a s s  o f  i n v e r s e  p r o b l e m s  u n d e r  c o n s i d e r a t i o n  
can be e x t e n d e d  even  t o  t h e  c a s e  o f  p l a t e  b e n d i n g  u n d e r  c r e e p  when t h e  d e f l e c t i o n s  a r e  much 
l e s s  t h a n  t h e  p l a t e  t h i c k n e s s .  In  p a r t i c u l a r ,  u n d e r  t h e  o r d i n a r y  b o u n d a r y  c o n d i t i o n s  [ 2 ] ,  
a t h e o r e m  can be p r o v e d  on t h e  u n i q u e n e s s  o f  t h e  s o l u t i o n  of  t h e  p r o b l e m  o f  f i n d i n g  t h e  e x -  
t e r n a l  l o a d s  a s s u r i n g  a g i v e n  r e s i d u a l  d e f l e c t i o n  ~ = ~ ( x l ,  x2 ,  t ) ,  i f  t h e  g o v e r n i n g  e q u a -  
t i o n s  o f  t h e  p l a t e  m a t e r i a l  have  t h e  form ( 1 . 1 ) - ( 1 . 3 )  w i t h  t h e  c o n s t r a i n t  ( 1 . 4 )  and c r e e p  
s t r a i n  d i s t r i b u t i o n s  ~ks c and v a l u e s  o f  q i  a r e  g i v e n  f o r  t = 0. The p r o o f  d u p l i c a t e s  t h a t  
p r e s e n t e d  i n  Sec .  1 by u s i n g  t h e  v i r t u a l  work e q u a t i o n  o b t a i n e d  i n  [ 2 ] .  

T h i s  same c l a s s  o f  p r o b l e m s  a l l o w s  a v a r i a t i o n a l  f o r m u l a t i o n .  Fo r  i n s t a n c e ,  i t  can 
be shown t h a t  t h e  s t a t i o n a r i t y  c o n d i t i o n s  o f  t h e  f u n c t i o n a l  ( 3 . 1 ) ,  where  t h e  s e c o n d  i n t e g r a l  
must be omitted while integration in the first is extended over the whole plate volume, will 
reduce to the following equalities written in the velocities: the relations (I.I) and (1.6), 

the equilibrium equation for moments Mks corresponding to residual stresses (~ks = 0), 
and the boundary conditions corresponding to a load-free plate contour after unloading. 

The situation is more complicated with the geometrically nonlinear problems when the 
plate deflections can significantly exceed its thickness. Such problems are encountered 
in pressure treatment of materials in the creep mode, when we speak about obtaining given 
residual deflections which indeed govern mainly the residual plate shape [6]. In this case, 
the uniqueness theorem is already not proved successfully, i.e., it is impossible to restore 
the external loads uniquely according to the given residual deflections and boundary condi- 
tions in general. (A similar situation holds even in direct geometrically nonlinear creep 
theory problems [7].) Nevertheless, under certain constraints even this inverse problem 
allows a variational formulation which we examine below. 

Let the plate occupy the domain S of the xiOx 2 plane bounded by a contour F. The prob- 
lem is to find the external forces needed to obtain the running residual deflection w = 
w(xz, x 2, t), w(xz, x2, 0) = 0. Let us assume that these external loads are not large, so 
that the elastic "spring-back" [2, 6] w, = w - w is much less than w. Then we have for 
the running and residual strains [2] 
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e~, = (l/2)(u<~ § u~,~)q-(t/2) (w + w,);~ ( ~ §  w , ) : -  

- -  z (w + w. ) ,~  ~ (l/2)(t~,~ + u,,~) + (il2),(g,,~Tv,~ + 7v,~,..,~ + 

§ ~v, tw.,~ ) - -  z(~v + w.),~,, 7~, = 0/2) (~u,, + u,,~) + 

+ (i12) ~,~:~ - -  zTv,~, (k,l: = i, 2) 

(4.1) 

(u k and Uk are components of the running and residual displacements in theplane of the plate). 

Let us note that the assumption lw, l ~ lwl is not true for small values of t. However, 
by virtue of the smallness of the external forces, the main contribution to the strain will 
be given by the bending strains while the nonlinear terms in (4.1) can be neglected for small 
t,i.e., 

+ + + + o. 

Let us assume that residual displacements Uk, are given on the contour r. Then we write 
the functional analogous to (3.1) in the form 

h/~ 
f~ r �9 �9 ,~, �9 �9 . 

--h/~ s ( 4 . 2 )  

where h is the plate thickness, s is the arc length of the contour F; ~ks and ~ks are defined 
in (4.1). Summation over the repeated subscripts in (4.2) is from 1 to 2. 

Varied independently in the functional (4.2) are ~163 Pks Uk, Uk, and Q,. Omitting 
the calculations analogous to those elucidated in [2, 5], we present the final expression 

- -  / 2  

S 

+ + + 

Here Nks are membrane forces corresponding to the field Oks ~ks and Mks are membrane forces 
and moments corresponding to the field Pks O = ~ks s n = 8ks163 @ = ~ks163 n k, t k 
(k = i, 2) are components of the unit normal and tangent vectors to the contour r. 

Therefore, the equality 8J = 0 is equivalent to the physical equations (I.i) and (1.6) 
in velocities, the equilibrium equations for the running and residual quantities 

/Vk~,l = 0 (k = i ,  2), (Nklw, ~ +  37kZ,kl)" = O; ( 4 . 3 )  

and the boundary conditions on r 

Nhtnt=ph, Naznt=O, Q+OH/as=G=O, Uk=Uk,  ( k = t ,  2). ( 4 . 4 )  

The e q u a l i t i e s  ~ks = 0 and NkEns = 0 on F f o r  t = 0 were used  in  ( 4 . 3 )  and ( 4 . 4 ) .  I n  p a r -  
t i c u l a r ,  t h e r e  r e s u l t s  f rom t h e  bounda ry  c o n d i t i o n s  t h a t  t h e  c o n t o u r  r i s  c o m p l e t e l y  f r e e  
o f  e x t e r n a l  l o a d s  a f t e r  u n l o a d i n g .  

I f  t h e  r e s i d u a l  d i s p l a c e m e n t s  fik a r e  n o t  g i v e n  on r ,  t h e n  t h e  i n t e g r a l  ove r  r must  be 
o m i t t e d  in  ( 4 . 2 ) .  I n  t h i s  c a s e  t h e  e q u a l i t y  6J = 0 i s  e q u i v a l e n t  t o  t h e  same r e l a t i o n s h i p s  
( l . 1 )  and ( 1 . 6 )  in v e l o c i t i e s  and t h e  e q u i l i b r i u m  e q u a t i o n s  ( 4 . 3 )  w h i l e  t h e  l a s t  in  t h e  boun-  
d a r y  c o n d i t i o n s  ( 4 . 4 )  must  be removed and t h e  f i r s t  must be r e p l a c e d  by Nks t = 0. 

Finding the initial stress field Ok~ 0 reduces, as in Sec. 3, to minimization of a func- 
tional of type (3.2) under the condition of existence of the creep Potential ~ = $(Oks qi)" 
As noted above, we consider here that the loads are small at t = 0 and the bending strains 
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will be fundamental, i.e., strains of the plate middle plane are neglected. Repeating the 
course of the discussion in Sec. 3, and using the virtual work equation from [2], it is easy 
to show that among all possible elastic stress fields the true initial stress state Oks 0 
minimizes the functional 

h12 

--h12 s s 

- S [ ( e o  + Go 
I' 

(4.5) 

where q0 = -Mkg0,k~ are expressed in terms of Q0, H0, and G o bY the relationships presented 
above; Mk~ 0 are moments corresponding to the field Ok~0; and w0 is the given initial rate of 

change of the residual deflection. The equalities ~ + 3~/8s = ~ = 0 on F for t = 0 were 
used in deriving (4.5) and which, in particular, enter into (4.4) and correspond to a load- 
free contour after unloading. 

Therefore, the considered class of inverse creep theory problems about finding the ex- 
ternal loads that assure a given residual body or plate shape allow for a variational formu- 
lation in both geometrically linear and nonlinear formulations (under additional assumptions 
about the smallness of the external loads). This is fundamental for the construction of 
algorithms for the numerical solution of such problems that refer to problems on the pres- 
sure treatment of materials in the creep mode. 

The author is grateful to I. V. Sukhorukov for calculations performed on the electronic 
computer. 
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